Mastery Maths Parent Workshop

$7^{\text {th }}$ February 2pm
$10^{\text {th }}$ February 6 pm

Mastery of Mathematics is.....

- Achievable for all
- Deep and sustainable learning
- The ability to build on something that has already been sufficiently mastered
- The ability to reason about a concept and make connections
- Conceptual and procedural fluency

Teaching for Mastery

- The belief that all pupils can achieve
- Keeping the class working together so that all can access and master mathematics
- Development of deep mathematical understanding
- Development of both factual/procedural and conceptual fluency
- Longer time on key topics, providing time to go deeper and embed learning

What does it mean to master something?

If you drive a car, imagine the process you went through...

- The very first drive, lacking knowledge of what to do to get moving
- The practice, gaining confidence that you are able to drive
- The driving test, fairly competent but maybe not fully confident
- A few years on, it's automatic, you don't have to think about how to change gears or use the brake
- Later still, you could teach someone else how to drive

In the past

- Children who were quick graspers were being accelerated quickly through the curriculum without allowing them to secure a deep understanding of each concept.
- Children who struggled with maths were given easier tasks and did not always access the same curriculum that the quick graspers did.
- As a result children had large gaps in their mathematical understanding.

Subtraction

Mathematical fluency - what is it?

$$
15 \times 12=180
$$

How could we solve this?

Fluency is the ability to make connections and select the most appropriate/ efficient methods.

Fluency is more than memorising facts

To become fluent mathematicians, children need to develop:

- an understanding of the meaning of the operations and their relationships to each other. E.g. inverse operations.
- an understanding number relationships. E.g. 4×5 is related to 4×50.
- confident use of calculating with 10, 100 and 1000. E.g. $24+10=34$ or $24 \times 10=240$.

Learning number facts What addition facts do children need to know by the end of Year 2?

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Children need different to learn different methods - not just memorise these facts.
They will
develop an understanding of which method is the most appropriate. E.g. near doubles.

Concrete and Pictorial Resources

Representation and Structure

Subitising - counting in the Early Years

- The ability to instantly identify a set or group of objects without counting them (usually up to 6).

$$
0 \quad 0
$$

Ten Frame used to develop number sense and fluency

What do you see?

Bridging through 10 'Make 10'

 $7+5$

$7+5$

Part - Whole Relationships

Variation

Variation

Variation

Apply to other maths 'stories' / contexts

Dan's trousers have two pockets and he has 6 pennies in his trouser pockets. How many coins might there be in each pocket?

Use of stem
sentences.
3 is a part.
3 is a part. 6 is the whole

Introducing the bar model

Use of stem

sentences.
6 is the whole
1 is a part. 5 is a part.

Move from pictorial/ symbolic to abstract.

Mastery of the part whole model!

How might we use these models with older children?

Maths Stories
Q. Write a realistic word problem which will use this
bar model to solve:
les

A There me so sen books delivered to a late shop. 34 them are hand lack. How many ass paperback?
A. True or talse?

The difference between 8214 and 3192 is 5022.
B. Complete the part-whole model.

C. 9,714 people are at the airport. 4,532 are men. 4,471 are women.

True or False

Different

 Representations

Supporting all learners

- Same input for all children
- Ping pong style teaching - all children get a chance to respond
- Group work and talk tasks
- Scaffolds - word bank, extra concrete resources, TA in small group
- Carefully planned questions to address misconceptions
- Carefully planned questions to challenge quick graspers

Supporting all learners

- Children work on the same independent questions which will be a mix of fluency, problem solving and reasoning.
- The tasks typically get more challenging as the children move through them.
- Children who are struggling may be in a small group to work on one or two tasks with a TA or teacher.
- Children who are comfortable with the learning will be able to choose a "Greater Depth" challenge which will challenge them further while still focusing on the same learning objective.

In maths lessons ...

- Children are frequently asked to prove their answers.
- We never just tell the children to use a method without explaining why.
- Children are often led to come up with the method by themselves.
- Concrete and pictorial resources are used to help support their understanding.
- Teachers are always asking "Why?", "How do you know?" and "Are you sure?!"

Maths at home

The School Run - Maths
https://www.theschoolrun.com/maths
Maths Bot - interactive resources and manipulatives
https://mathsbot.com/
TT Rockstars - times tables (all children have log ins)
https://ttrockstars.com/

Mathletics - all children have log ins
https://login.mathletics.com/

Questions

